试题 试卷
题型:证明题 题类:真题 难易度:容易
吉林省2018年中考数学试卷
①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;
②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;
③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.
正确的是( )
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.
如图,正方形ABCD的边长为2cm,正方形AEFG的边长为1cm. 正方形AEFG绕点A旋转的过程中,线段CF的长的最小值为{#blank#}1{#/blank#}cm.
试题篮