阅读下列材料:教科书中这样写道:“我们把多项式
及
叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.即将多项式
(b、c为常数)写成
(h、k为常数)的形式,配方法是一种重要的解决数学问题的方法,不仅可以将有些看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题及求代数式最大、最小值等问题.
【知识理解】
(1)若多项式
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsup%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3Ek%3C%2Fmi%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E16%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
是一个完全平方式,那么常数k的值为_________.
(2)配方:
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsup%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E6%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E10%3C%2Fmn%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmsup%3E%3Cmrow%3E%3Cmfenced+open%3D%22%28%22+close%3D%22%29%22%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
________;
【知识运用】
(4)求多项式:
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsup%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmsup%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E4%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E6%3C%2Fmn%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E15%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的最小值.