试题 试卷
题型:单选题 题类:模拟题 难易度:困难
山东省淄博市淄川区2017年中考数学一模试卷
下列图案是由同样大小的小正方形按一定的规律拼接而成.其中第一个图案有1个小正方形,第二个图案有5个小正方形,第三个图案有13个小正方形,依此规律,第7个图案中小正方形的个数为
图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.
(1)图②有多少个三角形;图③有多少个三角形.
(2)按上面的方法继续下去,第n个图形中有多少个三角形?(用n的代数式表示结论)
(3)有没有一个图形中存在2016个三角形?如果存在,请求出是第几个三角形;如果不存在,请说明理由.
古希腊著名的毕达哥拉斯学派把1、3、6、10 …这样的数称为“三角形数”,而把1、4、9、16 …这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是{#blank#}1{#/blank#} (填序号)
①13=3+10;②25=9+16;③36=15+21;④49=18+31.
在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1 , 如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1 , 使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是{#blank#}1{#/blank#}.
试题篮