如图1,在△ABC中,设∠A、∠B、∠C的对边分别为a,b,c,过点A作AD⊥BC,垂足为D,会有sin∠C=
,则
S△ABC=
BC×AD=
×BC×ACsin∠C=
absin∠C,
即S△ABC=
absin∠C
同理S△ABC=
bcsin∠A
S△ABC=
acsin∠B
通过推理还可以得到另一个表达三角形边角关系的定理﹣余弦定理:
如图2,在△ABC中,若∠A、∠B、∠C的对边分别为a,b,c,则
a2=b2+c2﹣2bccos∠A
b2=a2+c2﹣2accos∠B
c2=a2+b2﹣2abcos∠C
![](http://tikupic.21cnjy.com/0c/93/0c937179d60093ff6ee3f007c96ff612.png)
用上面的三角形面积公式和余弦定理解决问题: