试题 试卷
题型:综合题 题类:常考题 难易度:困难
湖南省长沙市开福区青竹湖湘一外国语学校2021届九年级上学期数学期末考试试卷
①求抛物线L的解析式;
②若直线PC交抛物线L于点E(x1 , y1)、F(x2 , y2),交y轴于点Q,平面内一点H坐标为H(4 ,2),记d=|x1﹣x2|,当点P在⊙B上运动时,求( )2的取值范围.
如图1,一条抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,且当x=﹣1和x=3时,y的值相等,直线与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M.
如图,已知抛物线C1与坐标轴的交点依次是A(-4,0),B(-2,0),E(0,8)。(1)求抛物线C1关于原点对称的抛物线C2的解析式;(2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于C、D两点(点C在点 D的左侧),顶点为N,四边形MDNA的面积为S。若点A、点D同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M、点N同时以每秒2个单位的速度沿竖直方向分别向下、向上运动,直到点A与点D重合为止。求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围;(3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值;(4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由.
如图,已知抛物线y=﹣x2+bx+9﹣b2(b为常数)经过坐标原点O,且与x轴交于另一点E.其顶点M在第一象限.
试题篮