试题
试题
试卷
登录
注册
当前位置:
首页
题型:解答题
题类:常考题
难易度:普通
利用导数研究函数的极值+++740
已知f(x)=x
3
+ax
2
+bx+c,在x=1与x=﹣2时,都取得极值.
(1)、
求a,b的值;
(2)、
若x∈[﹣3,2]都有f(x)>
恒成立,求c的取值范围.
举一反三
设函数f(x)=x
2
﹣aln(x+2),g(x)=xe
x
, 且f(x)存在两个极值点x
1
、x
2
, 其中x
1
<x
2
.
已知函数f(x)=
,(a>0).
已知函数f(x)=x(x﹣m)
2
在x=2处取得极小值,则常数m的值为( )
已知函数f(x)=ln
+
,g(x)=e
x
﹣
2
, 对于∀m∈R,∃n∈(0,+∞)使得f(m)=g(n)成立,则n﹣m的最大值为( )
若对任意的x
1
∈[e
﹣
1
, e],总存在唯一的x
2
∈[﹣1,1],使得lnx
1
﹣x
1
+1+a=x
2
2
e
x2
成立,则实数a的取值范围是( )
设函数
(
),
.
返回首页
相关试卷
广西壮族自治区桂林市2023-2024学年高二下学期联合检测考试(3月)数学试题
甘肃省兰州新区第一高级中学2024-2025学年高一上学期期末学业水平质量测试数学试卷
甘肃省白银市2024-2025学年高二上学期期末联考数学试卷
山东省青岛市海尔学校2023-2024学年高二下学期期中考试数学试题
山东省新航标(联考)2024-2025学年高三上学期12月联考数学试题
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册