试题 试卷
题型:综合题 题类:模拟题 难易度:困难
湖北省武汉市硚口区部分学校2020年数学中考模拟试卷(4月)
①过D点作DE⊥y轴于点E,问是否存在P点使得四边形PMEC为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;
②作PN⊥AD于点N,设△PMN的周长为m,点P的横坐标为x,求m关于x的函数关系式,并求出m的最大值.
如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是( )
如图,抛物线y=ax2+bx+c经过A(﹣ ,0)、B(3 ,0)、C(0,3)三点,线段BC与抛物线的对称轴相交于D.该抛物线的顶点为P,连接PA、AD、DP,线段AD与y轴相交于点E.
如图,在直角坐标系中,点P的坐标是(n,0)(n>0),抛物线y=﹣x2+bx+c经过原点O和点P,已知正方形ABCD的三个顶点为A(2,2),B(3,2),D(2,3).
(参考公式:y=ax2+bx+c(a≠0)的顶点坐标是(﹣ , ).
试题篮