试题 试卷
题型:解答题 题类:常考题 难易度:普通
2017年陕西省榆林市高考数学一模试卷(理科)
如图,AC是圆O的直径,点B在圆O上,∠BAC=30°,BM⊥AC交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1.
(Ⅰ)证明:EM⊥BF;
(Ⅱ)求平面BEF与平面ABC所成的锐二面角的余弦值.
如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形.
(Ⅰ)证明:PB⊥CD;
(Ⅱ)求点A到平面PCD的距离.
①存在点E和某一翻折位置使得AE∥平面SBC;②存在点E和某一翻折位置使得SA⊥平面SBC;③二面角S﹣AB﹣E的平面角总是小于2∠SAE.
(Ⅰ)证明: 平面 ;
(Ⅱ) 是线段 上一点,且直线 与平面 所成角的正弦值为 ,求二面角 的余弦值.
试题篮