试题 试卷
题型:综合题 题类:模拟题 难易度:普通
2017年安徽省宿州市灵璧县磬乡协作校中考数学一模试卷
如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.
如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),(0,2)(1)求过A、B、C三点的抛物线解析式.(2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒,(0≤t≤6)设△PBF的面积为S.①求S与t的函数关系式.②当t是多少时,△PBF的面积最大,最大面积是多少?(3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由.
在平面直角坐标系xOy中,已知二次函数y= 的图象经过点A(2,0)和点B(1,﹣ ),直线l经过抛物线的顶点且与y轴垂直,垂足为Q.
已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2﹣10x+16=0的两个根,且抛物线的对称轴是直线x=﹣2.
问题提出
如图1,在中, , , 点D在上, , 点P沿折线运动(运动到点C停止),以为边作正方形 . 设点P运动的线路长为x , 正方形的面积为y .
初步感悟
试题篮