试题 试卷
题型:证明题 题类:真题 难易度:困难
如图,抛物线y=a(x﹣m)2+2m﹣2(其中m>1)与其对称轴l相交于点P,与y轴相交于点A(0,m﹣1).连接并延长PA、PO,与x轴、抛物线分别相交于点B、C,连接BC.点C关于直线l的对称点为C′,连接PC′,即有PC′=PC.将△PBC绕点P逆时针旋转,使点C与点C′重合,得到△PB′C′.
(1)该抛物线的解析式为 (用含m的式子表示);
(2)求证:BC∥y轴;
(3)若点B′恰好落在线段BC′上,求此时m的值.
如图,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.
(1)点的相伴抛物线的解析式为______;过 , 两点的抛物线的相伴点坐标为______;
(2)设点 在直线上运动:
①点的相伴抛物线的顶点都在同一条抛物线上,求抛物线的解析式.
②当点的相伴抛物线的顶点落在内部时,请直接写出的取值范围.
试题篮