试题 试卷
题型:单选题 题类:常考题 难易度:普通
已知:如图,直线y=﹣x+与x轴、y轴分别交于A、B两点,两动点D、E分别以1个单位长度/秒和个单位长度/秒的速度从A、B两点同时出发向O点运动(运动到O点停止);过E点作EG∥OA交抛物线y=a(x﹣1)2+h(a<0)于E、G两点,交AB于点F,连结DE、BG.若抛物线的顶点M恰好在BG上且四边形ADEF是菱形,则a、h的值分别为( )
如图,抛物线与x轴交于点A(﹣ , 0),点B(2,0),与y轴交于点C(0,1),连接BC.
(1)求抛物线的解析式;
(2)N为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t(﹣),求△ABN的面积s与t的函数解析式;
(3)若0<t<2且t≠0时,△OPN∽△COB,求点N的坐标.
如图,已知抛物线y=x2﹣(m+3)x+9的顶点C在x轴正半轴上,一次函数y=x+3与抛物线交于A、B两点,与x、y轴分别交于D、E两点.
我们常见的炒菜锅和锅盖都是抛物面,经过锅心和盖心的纵断面是由两段抛物线组合而成的封闭图形,不妨简称为“锅线”.锅口直径为6dm,锅深3dm,锅盖高1dm(锅口直径与锅盖直径视为相同),建立直角坐标系如图1所示,如果把锅纵断面的抛物线记为C1 , 把锅盖纵断面的抛物线记为C2 .
如图,已知抛物线y= (x+2)(x﹣4)与x轴交于点A、B(点A位于点B的左侧),与y轴交于点C,CD∥x轴交抛物线于点D,M为抛物线的顶点.
试题篮