试题 试卷
题型:填空题 题类:常考题 难易度:普通
如图,已知△ABC,外心为O,BC=10,∠BAC=60°,分别以AB,AC为腰向形外作等腰直角三角形△ABD与△ACE,连接BE,CD交于点P,则OP的最小值是 .
求作:点D(点D与点B在直线AC的异侧),使得DA=DC,且∠ADC+∠ABC=180°.
作法:①分别作线段AC的垂直平分线l1和线段BC的垂直平分线l2 , 直线l1与l2交于点O;
②以点O为圆心,OA的长为半径画圆,⊙O与l1在直线BC上方的交点为D;
③连接DA,DC.
所以点D就是所求作的点.
试题篮