试题 试卷
题型:证明题 题类:常考题 难易度:普通
如图,在△ABC中,CD是AB边上的中线,E是CD的中点,过点C作AB的平行线交AE的延长线于点F,连接BF.
(1)求证:CF=AD;
(2)若CA=CB,∠ACB=90°,试判断四边形CDBF的形状,并说明理由.
已知,如图,▱ABCD中,BC=8cm,CD=4cm,∠B=60°,点M从点D出发,沿DA方向匀速运动,速度为2cm/s,点N从点B出发,沿BC方向匀速运动,速度为1cm/s,过M作MF⊥CD,垂足为F,延长FM交BA的延长线于点E,连接EN,交AD于点O,设运动时间为t(s)(0<t<4),解答下列问题:
如图 , 在中,以边为底边向外作等腰 , 其中 , 且 , 那么点就被称为边的“外展等直点”.
【建构与探究】
如图 , 正方形网格是由边长为“”的正方形组成,点、、、都在格点上, , 点为的中点.
试题篮