试题 试卷
题型:填空题 题类:常考题 难易度:普通
如图,在△ABC中,∠C=90°,CD⊥AB,垂足为D,AC=20,BC=15.动点P从A开始,以每秒2个单位长的速度沿AB方向向终点B运动,过点P分别作AC、BC边的垂线,垂足为E、F.(1)求AB与CD的长;(2)当矩形PECF的面积最大时,求点P运动的时间t;(3)以点C为圆心,r为半径画圆,若圆C与斜边AB有且只有一个公共点时,求r的取值范围.
如图,在平面直角坐标系中,半径为2的⊙M的圆心坐标是(4,2),将直线y=﹣2x+1向上平移k个单位后恰好与⊙M相切,则k的值是( )
如图,已知一动圆的圆心P在抛物线y= x2﹣3x+3上运动.若⊙P半径为1,点P的坐标为(m,n),当⊙P与x轴相交时,点P的横坐标m的取值范围是{#blank#}1{#/blank#}.
试题篮