试题 试卷
题型:解答题 题类:常考题 难易度:普通
如图,Rt△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,且∠ACB=90°,AB=5,BC=3,点P是边AC上的一动点,PH⊥AB,垂足为H.
(1)求⊙O的半径的长及线段AD的长;
(2)设PH=x,PC=y,求y关于x的函数关系式.
如图,⊙O是△ABC的内切圆,其切点分别为D、E、F,且BD=3,AE=2,则AB={#blank#}1{#/blank#} 。
已知:如图,在直角坐标系中,⊙O1经过坐标原点,分别与x轴正半轴、y轴正半轴交于点A(3,0)、B(0,4).设△BOA的内切圆的直径为d,求d+AB的值.
定义:三角形三条内角平分线的交点叫做三角形的内心;
性质:内心到三角形三边的距离相等.
如图1,点 为 的内心, 于 , 于E, 于 ,则有 .
问题:如何求 的值呢?
探究:
试题篮