广东省深圳市罗湖区2018-2019学年八年级下学期数学期末考试试卷

修改时间:2024-07-13 浏览次数:572 类型:期末考试 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1. 观察下列图形,其中既是轴对称又是中心对称图形的是(   )
    A . B . C . D .
  • 2. 不等式 的解集在数轴上表示为(   )
    A . B . C . D .
  • 3. 下列从左到右的变形,是分解因式的是(   )
    A . B . C . D .
  • 4. 一个多边形的内角和与外角和相等,则这个多边形的边数为(   )
    A . 8 B . 6 C . 5 D . 4
  • 5. 若分式 都扩大到原来的3倍,则分式 的值是(   )
    A . 扩大到原来3倍 B . 缩小3倍 C . 是原来的 D . 不变
  • 6. 如图,在三角形 中, 平分 于点 ,且 ,则点 的距离为(   )

    A . B . C . D .
  • 7. 如图,将一个含有 角的直角三角板的直角顶点放在一张宽为 的矩形纸带边沿上,另一个顶点在纸带的另一边沿上,若测得三角板的一边与纸带的一边所在的直线成 角,则三角板最长的长是(   )

    A . B . C . D .
  • 8. 如图,在 中, =55°, ,分别以点 和点 为圆心,大于 的长为半径画弧,两弧相交于点 ,作直线 ,交 于点 ,连接 ,则 的度数为(   )

    A . B . C . D .
  • 9. 下列语句:①每一个外角都等于 的多边形是六边形;②“反证法”就是举反例说明一个命题是假命题;③“等腰三角形两底角相等”的逆命题是真命题;④分式值为零的条件是分子为零且分母不为零,其中正确的个数为(   )
    A . 1 B . 2 C . 3 D . 4
  • 10. 古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.如图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形”之和,下列等式中,符合这一规律的表达式为(   )

    A . B . C . D .
  • 11. 如图,等边三角形 的边长为4,点 是△ABC的中心, 的两边 分别相交于 点顺时针旋转时,下列四个结论正确的个数是(   )

    ;② ;③ ;④ 周长最小值是9.

    A . 1个 B . 2个 C . 3个 D . 4个

二、填空题

  • 12. 分解因式:
  • 13. 如图所示,在直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案中左、右眼睛的坐标分别是(-4,2),(-2,2),右边图案中左眼的坐标是(3,4),则右边图案中右眼的坐标是.

  • 14. 已知关于 的方程 会产生增根,则
  • 15. 如图所示,△ABC中,AB=10cm,AC=8cm,∠ABC和∠ACB的角平分线交于点O,过点O作BC的平行线MN交AB于点M,交AC于点N,则△AMN的周长为.

三、解答题

  • 16. 解不等式组: 并把其解集在数轴上表示出来.
  • 17. 解分式方程:
  • 18. 先化简,再求值: ,其中 是不等式 的正整数解.
  • 19. 如图,平行四边形 的边 轴上,将平行四边形 沿对角线 对折, 的对应线段为 ,且点 在同一直线上, 相交于 .

    (1) 求证:
    (2) 若直线 的函数表达式为 ,求 的面积.
  • 20. 某工厂制作甲、乙两种窗户边框,已知同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个,且制成一个甲种边框比制成一个乙种边框需要多用 的材料.
    (1) 求制作每个甲种边框、乙种边框各用多少米材料?
    (2) 如果制作甲、乙两种边框的材料共640米,要求制作乙种边框的数量不少于甲种边框数量的2倍,求应最多安排制作甲种边框多少个(不计材料损耗)?
  • 21. 由边长为1的小正方形组成的格点中,建立如图平面直角坐标系,△ABC的三个顶点坐标分别为A(−2,1),B(−4,5),C(−5,2).

    (1) 请画出△ABC关于y轴对称的△A B C
    (2) 画出△ABC关于原点O成中心对称的△A B C
    (3) 请你判断△AA A 与△CC C 的相似比;若不相似,请直接写出△AA A 的面积.
  • 22. 如图1,在△ABC中,AB=BC=5,AC=6,△ECD是△ABC沿BC方向平移得到的,连接AE、BE,且AC和BE相交于点O.

    (1) 求证:四边形ABCE是菱形;
    (2) 如图2,P是线段BC上一动点(不与B.C重合),连接PO并延长交线段AE于点Q,过Q作QR⊥BD交BD于R.

    ①四边形PQED的面积是否为定值?若是,请求出其值;若不是,请说明理由;

    ②以点P、Q、R为顶点的三角形与以点B.C.O为顶点的三角形是否可能相似?若可能,请求出线段BP的长;若不可能,请说明理由.

试题篮