湖南省湘西州2018年中考数学试卷

修改时间:2024-07-13 浏览次数:499 类型:中考真卷 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、填空题

二、选择题

  • 9. 下列运算中,正确的是(   )
    A . a2•a3=a5 B . 2a﹣a=2 C . (a+b)2=a2+b2 D . 2a+3b=5ab
  • 10. 如图所示的几何体的主视图是(   )


    A . B . C . D .
  • 11. 在某次体育测试中,九年级(1)班5位同学的立定跳远成绩(单位:m)分别为:1.81,1.98,2.10,2.30,2.10.这组数据的众数为(   )
    A . 2.30 B . 2.10 C . 1.98 D . 1.81
  • 12. 不等式组 的解集在数轴上表示正确的是(   )
    A . B . C . D .
  • 13. 一次函数y=x+2的图象与x轴的交点坐标为(   )
    A . (0,2) B . (0,﹣2) C . (2,0) D . (﹣2,0)
  • 14. 下列四个图形中,是轴对称图形的是(   )
    A . B . C . D .
  • 15. 已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为(   )
    A . 相交 B . 相切 C . 相离 D . 无法确定
  • 16. 若关于x的一元二次方程x2﹣2x+m=0有一个解为x=﹣1,则另一个解为(   )
    A . 1 B . ﹣3 C . 3 D . 4
  • 17. 下列说法中,正确个数有(   )

    ①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.

    A . 1个 B . 2个 C . 3个 D . 4个
  • 18. 如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为(   )


    A . 10 B . 8 C . 4 D . 4

三、解答题

  • 19. 计算: +(π﹣2018)0﹣2tan45°
  • 20. 解方程组:
  • 21. 如图,在矩形ABCD中,E是AB的中点,连接DE、CE.


    (1) 求证:△ADE≌△BCE;
    (2) 若AB=6,AD=4,求△CDE的周长.
  • 22. 中华文化源远流长,在文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中抽取n名学生进行调查.根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:


    (1) 求n的值;
    (2) 请将条形统计图补充完整;
    (3) 若该校共有2000名学生,请估计该校四大古典名著均已读完的人数.
  • 23. 如图,某市郊外景区内一条笔直的公路l经过A、B两个景点,景区管委会又开发了风景优美的景点C.经测量,C位于A的北偏东60°的方向上,C位于B的北偏东30°的方向上,且AB=10km.

    (1) 求景点B与C的距离;
    (2) 为了方便游客到景点C游玩,景区管委会准备由景点C向公路l修一条距离最短的公路,不考虑其他因素,求出这条最短公路的长.(结果保留根号)
  • 24. 反比例函数y= (k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).


    (1) 求反比例函数的解析式及B点的坐标;
    (2) 在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.
  • 25. 某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
    (1) 求y关于x的函数关系式;
    (2) 该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?
    (3) 实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.
  • 26. 如图1,经过原点O的抛物线y=ax2+bx(a、b为常数,a≠0)与x轴相交于另一点A(3,0).直线l:y=x在第一象限内和此抛物线相交于点B(5,t),与抛物线的对称轴相交于点C.


    (1) 求抛物线的解析式;
    (2) 在x轴上找一点P,使以点P、O、C为顶点的三角形与以点A、O、B为顶点的三角形相似,求满足条件的点P的坐标;
    (3) 直线l沿着x轴向右平移得到直线l′,l′与线段OA相交于点M,与x轴下方的抛物线相交于点N,过点N作NE⊥x轴于点E.把△MEN沿直线l′折叠,当点E恰好落在抛物线上时(图2),求直线l′的解析式;
    (4) 在(3)问的条件下(图3),直线l′与y轴相交于点K,把△MOK绕点O顺时针旋转90°得到△M′OK′,点F为直线l′上的动点.当△M'FK′为等腰三角形时,求满足条件的点F的坐标.

试题篮