题型:解答题 题类:常考题 难易度:容易
人教A版高中数学必修三 第二章2.3-2.3.2两个变量的线性相关 同步训练
摄氏温度/ | -5 | 0 | 4 | 7 | 12 | 15 | 19 | 23 | 27 | 31 | 36 |
热饮杯数 | 156 | 150 | 132 | 128 | 130 | 116 | 104 | 89 | 93 | 76 | 54 |
(Ⅰ)试估计平均收益率;
(Ⅱ)根据经验若每份保单的保费在 元的基础上每增加 元,对应的销量 (万份)与 (元)有较强线性相关关系,从历史销售记录中抽样得到如下 组 与 的对应数据:
(元) | |||||
销量 (万份) |
(ⅰ)根据数据计算出销量 (万份)与 (元)的回归方程为 ;
(ⅱ)若把回归方程 当作 与 的线性关系,用(Ⅰ)中求出的平均获益率估计此产品的获益率,每份保单的保费定为多少元时此产品可获得最大获益,并求出该最大获益.
参考公示:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差 x (℃) | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数 y(个) | 22 | 25 | 29 | 26 | 16 | 12 |
该兴趣小组确定的研究方案是:先用2、3、4、5月的4组数据求线性回归方程,再用1月和6月的2组数据进行检验.
(参考公式: , )
参考数据:11×25+13×29+12×26+8×16= 1092,112+132+122+82=498.
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
不“礼让斑马线”驾驶员人数 | 120 | 105 | 100 | 85 | 90 | 80 |
(Ⅰ)请根据表中所给前5个月的数据,求不“礼让斑马线”的驾驶员人数 与月份 之间的回归直线方程 ;
(Ⅱ)若该十字路口某月不“礼让斑马线”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让斑马线”情况达到“理想状态”.试根据(Ⅰ)中的回归直线方程,判断6月份该十字路口“礼让斑马线”情况是否达到“理想状态”?
(Ⅲ)若从表中3、4月份分别选取4人和2人,再从所选取的6人中任意抽取2人进行交规调查,求抽取的两人恰好来自同一月份的概率.
参考公式: , .
x | 196 | 197 | 200 | 203 | 204 |
y | 1 | 3 | 6 | 7 | m |
日期 |
12月2日 |
12月3日 |
12月4日 |
温差 ( ) | 11 | 13 | 12 |
发芽数 (颗) | 25 | 30 | 26 |
试题篮