试题 试卷
题型:解答题 题类:常考题 难易度:普通
福建省龙岩市非一级达标校2017-2018学年高一下学期数学期末考试试卷
⑴
⑵
⑶
⑷
⑸
(Ⅰ)试从上述五个式子中选择一个,求出这个常数;
(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明该结论.
(1)若a1 , a3 , a5成等比数列,求d的值;
(2)在a1=1,d=3 的无穷等差数列{an}中,是否存在无穷子数列{bn},使得数列(bn)为等比数列?若存在,请给出数列{bn}的通项公式并证明;若不存在,说明理由;
(3)他在研究过程中猜想了一个命题:“对于首项为正整数a,公比为正整数q(q>1)的无穷等比数列{cn},总可以找到一个子数列{bn},使得{dn}构成等差数列”.于是,他在数列{cn}中任取三项ck , cm , cn(k<m<n),由ck+cn与2cm的大小关系去判断该命题是否正确.他将得到什么结论?
{#blank#}1{#/blank#}.
①若 ,则甲有必赢的策略;②若 ,则乙有必赢的策略;③ 若 ,则乙有必赢的策略;④若 ,则甲有必赢的策略。
试题篮