试题 试卷
题型:解答题 题类:常考题 难易度:普通
贵州省贵阳市第一中学2018届高三12月文数月考试题
在平面直角坐标系中,已知曲线 的参数方程为 ( 为参数),点 是曲线 上的一动点,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,直线 的方程为 .
(Ⅰ)求线段 的中点 的轨迹的极坐标方程;
(Ⅱ)求曲线 上的点到直线 的距离的最大值.
(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;
(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.
(Ⅰ)求动点P的轨迹方程,并说明方程表示的曲线;
(Ⅱ)当λ=4时,记动点P的轨迹为曲线D.F,G是曲线D上不同的两点,对于定点Q(﹣3,0),有|QF|•|QG|=4.试问无论F,G两点的位置怎样,直线FG能恒和一个定圆相切吗?若能,求出这个定圆的方程;若不能,请说明理由.
设在平面上取定一个极坐标系,以极轴作为直角坐标系的x轴的正半轴,以θ= 的射线作为y轴的正半轴,以极点为坐标原点,长度单位不变,建立直角坐标系,已知曲线C的直角坐标方程为x2+y2=2,直线l的参数方程 (t为参数).
试题篮