试题
试题
试卷
登录
注册
当前位置:
首页
题型:解答题
题类:常考题
难易度:普通
吉林省长春外国语学校2017-2018学年高二上学期数学期中考试试卷
已知椭圆
的离心率为
,它的一个焦点到短轴顶点的距离为2,动直线l:y=kx+m交椭圆E于A、B两点,设直线OA、OB的斜率都存在,且
.
(1)、
求椭圆E的方程;
(2)、
求证:2m
2
=4k
2
+3;
(3)、
求|AB|的最大值.
举一反三
椭圆
的离心率为( )
已知点P(
,1)和椭圆C:
+
=1.
如图,椭圆
(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F
1
, F
2
, 若|AF
1
|,|F
1
F
2
|,|F
1
B|成等比数列,则此椭圆的离心率为( )
如图所示,一个圆柱形乒乓球筒,高为20厘米,底面半径为2厘米.球筒的上底和下底分别粘有一个乒乓球,乒乓球与球筒底面及侧面均相切(球筒和乒乓球厚度均忽略不计).一个平面与两个乒乓球均相切,且此平面截球筒边缘所得的图形为一个椭圆,则该椭圆的离心率为{#blank#}1{#/blank#}.
已知椭圆
与双曲线
有相同的焦点,则
的值为( )
已知椭圆
,双曲线
. 若双曲线
N
的两条渐近线与椭圆
M
的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆
M
的离心率为{#blank#}1{#/blank#};双曲线
N
的离心率为{#blank#}2{#/blank#}
返回首页
相关试卷
2025高考一轮复习(人教A版)第十六讲 三角函数的应用
2025高考一轮复习(人教A版)第五十三讲 列联表与独立性检验
2025高考一轮复习(人教A版)第五十二讲 一元线性回归模型及其应用
2025高考一轮复习(人教A版)第五十一讲 成对数据的相关关系
2025高考一轮复习(人教A版)第五十讲 正态分布
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册