试题 试卷
题型:解答题 题类:模拟题 难易度:普通
安徽省蚌埠市2016-2017学年高考理数三模考试试卷
(Ⅰ)若f(x)在(2,+∞)上存在极值点,求a的取值范围;
(Ⅱ)设x1∈(0,1),x2∈(1,+∞),若f(x2)﹣f(x1)存在最大值,记为M(a).则a≤e+ 时,M(a)是否存在最大值?若存在,求出最大值;若不存在,请说明理由.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)记f(x)的最大值为M(a),若a2>a1>0且M(a1)=M(a2),求证: ;
(Ⅲ)若a>2,记集合{x|f(x)=0}中的最小元素为x0 , 设函数g(x)=|f(x)|+x,求证:x0是g(x)的极小值点.
x
0
2
4
5
3
1
2.5
的导函数的图象如图所示.给出下列四个结论:
①在区间上单调递增;
②有2个极大值点;
③的值域为;
④如果时,的最小值是1,那么t的最大值为4.
其中,所有正确结论的序号是{#blank#}1{#/blank#}.
试题篮