试题 试卷
题型:解答题 题类:模拟题 难易度:困难
2017年山东省聊城市高考数学三模试卷(理科)
①若直线l与x轴垂直,过点P(4,0)的直线PB交椭圆C于另一点E,证明直线AE与x轴相交于定点;
②已知D为椭圆C的左顶点,若l与直线DM平行,判断直线MA,MB是否关于直线FM对称,并说明理由.
如图,椭圆 的离心率为 ,顶点为A1、A2、B1、B2 , 且 .
(Ⅰ)求E的方程;
(Ⅱ)若E的右焦点为F,圆x2+y2=1的切线AB与E交于A,B 两点(A,B均在y轴右侧),求证:△ABF的周长为定值,并求△ABF的内切圆半径的最大值.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若圆O:x2+y2=1的切线l与曲线E相交于A、B两点,线段AB的中点为M,求|OM|的最大值.
试题篮