试题
试题
试卷
登录
注册
当前位置:
首页
题型:单选题
题类:模拟题
难易度:普通
2017年北京市海淀区高考数学查漏补缺试卷
如图,点P在平面上从点A出发,依次按照点B、C、D、E、F、A的顺序运动,其轨迹为两段半径为1的圆弧和四条长度为1,且与坐标轴平行的线段.设从运动开始射线OA旋转到射线OP时的旋转角为α.若点P的纵坐标y关于α的函数为f(α),则函数f(α)的图象( )
A、
关于直线
成轴对称,关于坐标原点成中心对称
B、
关于直线
成轴对称,没有对称中心
C、
没有对称轴,关于点(π,0)成中心对称
D、
既没有对称轴,也没有对称中心.
举一反三
在函数①y=x
﹣1
;②y=2
x
;③y=log
2
x;④y=tanx中,图象经过点(1,1)的函数的序号是( )
已知函数
,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是( )
函数f(x)=
的图象如图所示,则a+b+c={#blank#}1{#/blank#}.
函数
的零点个数为( )
探究与发现:为什么二次函数
的图象是抛物线?我们知道,平面内与一个定点F和一条定直线l距离相等的点的轨迹是抛物线,这是抛物线的定义,也是其本质特征
因此,只要说明二次函数的图象符合抛物线的本质特征,就解决了为什么二次函数
的图象是抛物线的问题
进一步讲,由抛物线与其方程之间的关系可知,如果能用适当的方式将
转化为抛物线标准方程的形式,那么就可以判定二次函数
的图象是抛物线了.下面我们就按照这个思路来展开.对二次函数式
的右边配方,得
.由函数图象平移
一般地,设
是坐标平面内的一个图形,将
上所有点按照同一方向,移动同样的长度,得到图形
,这一过程叫作图形的平移
的知识可以知道,沿向量
平移函数
的图象
如图,函数图象的形状、大小不发生任何变化,平移后图象对应的函数解析式为
,我们把它改写为
的形式
方程
,这是顶点为坐标原点,焦点为
的抛物线.这样就说明了二次函数
的图象是一条抛物线.
请根据以上阅读材料,回答下列问题:
函数
的大致图象为( )
返回首页
相关试卷
2025高考一轮复习(人教A版)第十六讲 三角函数的应用
2025高考一轮复习(人教A版)第五十三讲 列联表与独立性检验
2025高考一轮复习(人教A版)第五十二讲 一元线性回归模型及其应用
2025高考一轮复习(人教A版)第五十一讲 成对数据的相关关系
2025高考一轮复习(人教A版)第五十讲 正态分布
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册