题型:填空题 题类:常考题 难易度:普通
线性回归方程+++2
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
X(年) | 2 | 3 | 4 | 5 | 6 |
Y(万元) | 0.22 | 0.38 | 0.55 | 0.65 | 0.70 |
若已知y与x之间有线性相关关系,试求:
(Ⅰ)线性回归方程;
(Ⅱ)估计使用年限为10年时,维修费用约是多少?
超市 | A | B | C | D | E | F | G |
广告费支出x | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
销售额y | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
x | 3 | 6 | 7 | 9 | 10 |
y | 12 | 10 | 8 | 8 | 7 |
(Ⅰ)判定y与x之间是正相关还是负相关,并求回归方程 = x+
(Ⅱ)若该地1月份某天的最低气温为6℃,预测该店当日的营业额
(参考公式: = = , = ﹣ ).
温度x/℃ | 21 | 23 | 24 | 27 | 29 | 32 |
产卵数y/个 | 6 | 11 | 20 | 27 | 57 | 77 |
经计算得: , , , ,
,线性回归模型的残差平方和 ,e8.0605≈3167,其中xi , yi分别为观测数据中的温度和产卵数,i=1, 2, 3, 4, 5, 6.
(Ⅰ)若用线性回归模型,求y关于x的回归方程 = x+ (精确到0.1);
(Ⅱ)若用非线性回归模型求得y关于x的回归方程为 =0.06e0.2303x , 且相关指数R2=0.9522.
( i )试与(Ⅰ)中的回归模型相比,用R2说明哪种模型的拟合效果更好.
(ii)用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数(结果取整数).
附:一组数据(x1 , y1), (x2 , y2), ...,(xn , yn), 其回归直线 = x+ 的斜率和截距的最小二乘估计为
= − ;相关指数R2= .
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
不“礼让斑马线”驾驶员人数 | 120 | 105 | 100 | 85 | 90 | 80 |
(Ⅰ)请根据表中所给前5个月的数据,求不“礼让斑马线”的驾驶员人数 与月份 之间的回归直线方程 ;
(Ⅱ)若该十字路口某月不“礼让斑马线”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让斑马线”情况达到“理想状态”.试根据(Ⅰ)中的回归直线方程,判断6月份该十字路口“礼让斑马线”情况是否达到“理想状态”?
(Ⅲ)若从表中3、4月份分别选取4人和2人,再从所选取的6人中任意抽取2人进行交规调查,求抽取的两人恰好来自同一月份的概率.
参考公式: , .
表1,空气质量指数AQI分组表
AQI指数M | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
级别 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ |
状况 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
表2是某气象观测点记录的连续4天里AQI指数M与当天的空气水平可见度y(km)的情况,表3是某气象观测点记录的北京市2013年1月1日至1月30日的AQI指数频数分布表.
表2AQI指数M与当天的空气水平可见度y(km)的情况
AQI指数M | 900 | 700 | 300 | 100 |
空气水平可见度y(km) | 0.5 | 3.5 | 6.5 | 9.5 |
表3北京市2013年1月1日至1月30日AQI指数频数分布表
AQI指数M | [0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
频数 | 3 | 6 | 12 | 6 | 3 |
试题篮