试题
试题
试卷
登录
注册
当前位置:
首页
题型:填空题
题类:模拟题
难易度:普通
2017年云南省民族中学高考数学适应性试卷(理科)(6)
在平面内,Rt△ABC中,BA⊥CA,有结论BC
2
=AC
2
+AB
2
, 空间中,在四面体V﹣BCD中,VB,VC,VD两两互相垂直,且侧面的3个三角形面积分别记为S
1
, S
2
, S
3
, 底面△BCD的面积记为S,类比平面可得到空间四面体的一个结论是
.
举一反三
已知
, 那么函数
的周期为
。类比可推出:已知
且
, 那么函数
的周期是( )
在Rt△ABC中,两直角边分别为a、b,设h为斜边上的高,则
=
+
,由此类比:三棱锥S﹣ABC中的三条侧棱SA,SB,SC两两垂直,且长度分别为a、b、c,设棱锥底面ABC上的高为h,则{#blank#}1{#/blank#}.
设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则
,类比这个结论可知:四面体S﹣ABC的四个面的面积分别为S
1
、S
2
、S
3
、S
4
, 内切球半径为R,四面体S﹣ABC的体积为V,则R=( )
下列推理是类比推理的是( )
平面图形很多可以推广到空间中去,例如正三角形可以推广到正四面体,圆可以推广到球,平行四边形可以推广到平行六面体,直角三角形也可以推广到直角四面体,如果四面体
中棱
两两垂直,那么称四面体
为直角四面体. 请类比直角三角形中的性质给出2个直角四面体中的性质,并给出证明.(请在结论
中选择1个,结论4,5中选择1个,写出它们在直角四面体中的类似结论,并给出证明,多选不得分,其中
表示斜边上的高,
分别表示内切圆与外接圆的半径)
直角三角形
直角四面体
条件
结论1
结论2
结论3
结论4
结论5
求
的值时,可采用如下方法:令
,则
,两边同时平方,得
, 解得
(负值舍去),类比以上方法,可求得
的值等于( )
返回首页
相关试卷
四川省泸县第二中学2024-2025学年高一上学期1月期末数学试题
浙江省杭州市部分学校2025届高三上学期期末联考数学试题
湖南省长沙市长郡中学2024-2025学年高一上学期1月期末考试数学试题
湖南省长沙市第一中学2024-2025学年高三上学期阶段性检测(五)数学试题
广东省汕头市2024-2025学年高三上学期12月期末教学质量监测数学试题
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册