试题 试卷
题型:解答题 题类:模拟题 难易度:困难
2017年湖南省长沙市天心区长郡中学高考数学模拟试卷
在三棱锥ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是棱AB,BC,B1C1的中点.
(1)证明:A1B1⊥平面PMN;
(2)求三棱锥P﹣A1MN的体积.
(I)求证:DE∥平面A1C1B;
(II)求直线DE与平面ABB1A1所成的角的正弦值.
(Ⅰ)求证:平面PBD⊥平面PAC;
(Ⅱ)若PA=AB,求PC与平面PBD所成角的正弦值.
如图,由直三棱柱ABC﹣A1B1C1和四棱锥D﹣BB1C1C构成的几何体中,∠BAC=90°,AB=1,BC=BB1=2,C1D=CD= ,平面CC1D⊥平面ACC1A1 .
(Ⅰ)求证:AC⊥DC1;
(Ⅱ)若M为DC1的中点,求证:AM∥平面DBB1;
(Ⅲ)在线段BC上是否存在点P,使直线DP与平面BB1D所成的角为 ?若存在,求 的值,若不存在,说明理由.
试题篮