试题 试卷
题型:填空题 题类:常考题 难易度:普通
2016-2017学年河南省周口市西华一中高二下学期期中数学试卷(理科)
(1)函数f(x)的图象在点(1,f(1))处的切线与函数g(x)的图象相切,求实数b的值;
(2)若b=0,h(x)=f(x)﹣g(x),∃x1、x2[1,2]使得h(x1)﹣h(x2)≥M成立,求满足上述条件的最大整数M;
(3)当b≥2时,若对于区间[1,2]内的任意两个不相等的实数x1 , x2 , 都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|成立,求b的取值范围.
(1)求f(x)在x=1处的切线方程;
(2)当m≥﹣2时,证明:f(x)<g(x).
(Ⅰ)若直线y=g(x)和函数y=f(x)的图象相切,求k的值;
(Ⅱ)当k>0时,若存在正实数m,使对任意x∈(0,m),都有|f(x)﹣g(x)|>2x恒成立,求k的取值范围.
试题篮