试题 试卷
题型:解答题 题类:常考题 难易度:普通
2016-2017学年河南省周口市郸城一中高二上学期开学数学试卷
(Ⅰ)求证:B1F⊥平面AEF;
(Ⅱ)求三棱锥E﹣AB1F的体积.
如图,ABCD﹣A1B1C1D1为正方体,下面结论错误的序号是{#blank#}1{#/blank#}.
①BD∥平面CB1D1;
②AC1⊥BD;
③AC1⊥平面CB1D1;
④异面直线AD与CB1所成角为60°.
如图(1)所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分别为线段PC、PD、BC的中点,现将△PDC折起,使平面PDC⊥平面ABCD(图(2)).
(1)求证:平面EFG∥平面PAB;
(2)若点Q是线段PB的中点,求证:PC⊥平面ADQ;
(3)求三棱锥C﹣EFG的体积.
(Ⅰ)求证:BC⊥平面ACFE;
(Ⅱ)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.
求证:
附: ,其中 , 分别为台上下底面的面积, 为棱台的高.
试题篮