题型:单选题 题类:常考题 难易度:普通
独立性检验
= ,
假设关于某设备的使用年限x(年)和所支出的维修费用y(万元),有如表的统计资料:
使用年限x (年) | 2 | 3 | 4 | 5 | 6 |
维修费用y(万元) | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由资料可知y对x呈线性相关关系,试求:
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 50 | m | 70 |
根据表中提供的全部数据,用最小二乘法得出y与x的线性回归方程为 =6.5x+17.5,则表中m的值为( )
时间 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期七 |
车流量x(万辆) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
PM2.5的浓度y(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(Ⅰ)由散点图知y与x具有线性相关关系,求y关于x的线性回归方程;
(Ⅱ)(ⅰ)利用(Ⅰ)所求的回归方程,预测该市车流量为8万辆时PM2.5的浓度;
(ⅱ)规定:当一天内PM2.5的浓度平均值在(0,50]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(50,100]内,空气质量等级为良.为使该市某日空气质量为优或者为良,则应控制当天车流量在多少万辆以内?(结果以万辆为单位,保留整数.)
参考公式:回归直线的方程是 = x+ ,其中 = , = ﹣ .
试题篮