试题 试卷
题型:解答题 题类:模拟题 难易度:困难
2017年山东省淄博市高考数学一模试卷(理科)
(Ⅰ)求椭圆 C 的标准方程;
(Ⅱ)当 ⋅ =0 时,求△OPQ 面积的最大值;
(Ⅲ)若直线 l 的斜率为 2,求证:△APQ 的外接圆恒过一个异于点 A 的定点.
(Ⅰ)求曲线 的方程;
(Ⅱ)设过点 的直线 与曲线 交于不同的两点 ,求 面积最大时的直线 的方程.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点M(0,-1),直线l经过点N(2,1)且与椭圆C相交于A,B两点(异于点M),记直线MA的斜率为 ,直线MB的斜率为 ,证明 为定值,并求出该定值.
试题篮