试题 试卷
题型:解答题 题类:常考题 难易度:普通
2016-2017学年河北省衡水市武邑中学高三上学期期中数学试卷(理科)
如图,四棱锥P﹣ABCD中,PA=AB=1,PA⊥底面ABCD,底面ABCD为正方形,且M,N分别为PA与BC的中点
(1)求证:CD⊥平面PAD
(2)求证:MN∥平面PCD.
如图,在四面体ABCD中,O、E分别是BD、BC的中点,CA=CB=CD=BD=2,AB=AD=
(Ⅰ)求证:AO⊥平面BCD;
(Ⅱ)求点E到平面ACD的距离.
如图,在长方体ABCD﹣A1B1C1D1中AA1=AD=1,E为CD中点.
(Ⅰ)求证:B1E⊥AD1;
(Ⅱ)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.
(Ⅲ)若二面角A﹣B1E﹣A1的大小为30°,求AB的长.
试题篮