试题 试卷
题型:单选题 题类:常考题 难易度:普通
2015-2016学年河北省衡水市武邑中学高一下学期期中数学试卷
在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.
(1)求证:AB⊥CD;
(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.
如图,由直三棱柱ABC﹣A1B1C1和四棱锥D﹣BB1C1C构成的几何体中,∠BAC=90°,AB=1,BC=BB1=2,C1D=CD= ,平面CC1D⊥平面ACC1A1 .
(Ⅰ)求证:AC⊥DC1;
(Ⅱ)若M为DC1的中点,求证:AM∥平面DBB1;
(Ⅲ)在线段BC上是否存在点P,使直线DP与平面BB1D所成的角为 ?若存在,求 的值,若不存在,说明理由.
(Ⅰ)证明:AQ⊥平面PBC;
(Ⅱ)求直线BC与平面ABQ所成角的余弦值.
试题篮