试题 试卷
题型:解答题 题类:常考题 难易度:普通
2015-2016学年广东省茂名市信宜市高二下学期期末数学试卷(理科)
如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,AB∥CD,∠BAD=∠ADC=90°,AB=AD=2CD,E为PB的中点.
(1)证明:CE⊥AB;
(2)若二面角P﹣CD﹣A为60°,求直线CE与平面PAB所成角的正切值;
(3)若AB=kPA,求平面PCD与平面PAB所成的锐二面角的余弦值.
如图所示,正四棱锥P﹣ABCD中,侧棱PA与底面ABCD所成的角的正切值为 .
(1)求侧面PAD与底面ABCD所成的二面角的大小;
(2)若E是PB的中点,求异面直线PD与AE所成角的正切值;
(3)问在棱AD上是否存在一点F,使EF⊥侧面PBC,若存在,试确定点F的位置;若不存在,说明理由.
(Ⅰ)求证:AB⊥平面ADC;
(Ⅱ)若AD=1,二面角C﹣AB﹣D的平面角的正切值为 ,求二面角B﹣AD﹣E的余弦值.
试题篮