题型:单选题 题类:常考题 难易度:普通
某课题研究小组对学生报读文科和理科的人数进行了调查统计,结果如下:
在探究学生性别与报读文科、理科是否有关时,根据以上数据可以得到K2=19.308,则( )
雄性 | 雌性 | 总计 | |
敏感 | 50 | 25 | 75 |
不敏感 | 10 | 15 | 25 |
总计 | 60 | 40 | 100 |
由
附表:
P() | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
则下列说法正确的是( )
赞成禁放 | 不赞成禁放 | 合计 | |
老年人 | 60 | 140 | 200 |
中青年人 | 80 | 120 | 200 |
合计 | 140 | 260 | 400 |
附:K2=
P(k2>k0) | 0.050 | 0.025 | 0.010 |
k0 | 3.841 | 5.024 | 6.635 |
(Ⅰ)记A表示时间“旧养殖法的箱产量低于50kg”,估计A的概率;
(Ⅱ)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50kg | 箱产量≥50kg | |
旧养殖法 | ||
新养殖法 |
(Ⅲ)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.
附:
P(K2≥K) | 0.050 | 0.010 | 0.001 |
K | 3.841 | 6.635 | 10.828 |
K2= .
(Ⅰ)先完成关于商品和服务评价的2×2列联表,再判断能否在犯错误的概率不超过0.001的前提下,认为商品好评与服务好评有关?
(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:
①求对商品和服务全好评的次数X的分布列;
②求X的数学期望和方差.
附临界值表:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.897 | 10.828 |
K2的观测值:k= (其中n=a+b+c+d)
关于商品和服务评价的2×2列联表:
对服务好评 | 对服务不满意 | 合计 | |
对商品好评 | a=80 |
|
|
对商品不满意 |
| d=10 |
|
合计 |
|
| n=200 |
合计 | |||
认可 | |||
不认可 | |||
合计 |
(Ⅰ)若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此 列联表,并据此样本分析是否有 的把握认为城市拥堵与认可共享单车有关;
(Ⅱ)若从此样本中的 城市和 城市各抽取1人,则在此2人中恰有一人认可的条件下,此人来自 城市的概率是多少?
附:参考数据:(参考公式: )
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
试题篮