题型:单选题 题类:常考题 难易度:普通
独立性检验的应用+++++++++++++++
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由列联表算得k≈7.8
附表:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
参照附表,得到的正确结论是( )
喜欢数学 | 不喜欢数学 | 合计 | |
男生 | 60 | 20 | 80 |
女生 | 10 | 10 | 20 |
合计 | 70 | 30 | 100 |
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
附:参考公式:x2= (其中n=a+b+c+d)
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.010 | 0.005 |
k | 1.323 | 2.072 | 2.706 | 3.845 | 6.635 | 7.879 |
表一:男生测评结果统计
等级 | 优秀 | 合格 | 尚待改进 |
频数 | 15 | x | 5 |
表二:女生测评结果统计
等级 | 优秀 | 合格 | 尚待改进 |
频数 | 15 | 3 | y |
参考数据:
P(K2≥k0) | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
(参考公式: ,其中n=a+b+c+d).
尺寸(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
质量(g) | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
对数据作了初步处理,相关统计量的值如表:
|
|
|
|
75.3 | 24.6 | 18.3 | 101.4 |
(Ⅰ)根据所给数据,求y关于x的回归方程;
(Ⅱ)按照某项指标测定,当产品质量与尺寸的比在区间( , )内时为优等品.现从抽取的6件合格产品中再任选3件,记ξ为取到优等品的件数,试求随机变量ξ的分布列和期望.
附:对于一组数据(v1 , u1),(v2 , u2),…,(vn , un),其回归直线u=α+βv的斜率和截距的最小二乘估计分别为 = , = ﹣ .
理科 | 文科 | 合计 | |
男 | 13 | 10 | 23 |
女 | 7 | 20 | 27 |
合计 | 20 | 30 | 50 |
根据表中数据,得到K2的观测值k= ≈4.844,若已知P(K2≥3.841)≈0.05,P(K2≥5.024)~0.025,则认为选修理科与性别有关系出错的可能性约为( )
试题篮