题型:解答题 题类:常考题 难易度:普通
试题来源:江西省上饶市2020年1月理数一模试卷
受教育水平良好 | 受教育水平不好 | 总计 | |
绝对贫困户 | | ||
相对贫困户 | | ||
总计 | |
附: ,其中
.
| | | | |
| | | | |
(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,n∈N)的函数解析式f(n);
(Ⅱ)该商场记录了去年夏天(共10周)空调器需求量n(单位:台),整理得表:
周需求量n | 18 | 19 | 20 | 21 | 22 |
频数 | 1 | 2 | 3 | 3 | 1 |
以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,X表示当周的利润(单位:元),求X的分布列及数学期望.
某课题组从汽车市场上随机选取了20辆纯电动乘用车,根据其续驶里程R(单词充电后能行驶的最大里程,R∈[100,300])进行如下分组:第1组[100,150),第2组[150,200),第3组[200,250),第4组[250,300],制成如图所示的频率分布直方图.已知第1组与第3组的频率之比为1:4,第2组的频数为7.
纯电动续驶里程R(公里) | 100≤R<150 | 150≤R<250 | R>250 |
补贴标准(万元/辆) | 2 | 3.6 | 44 |
消费金额(单位:元) | |||||
购物单张数 | 25 | 25 | 30 |
由于工作人员失误,后两栏数据无法辨识,但当时记录表明,根据由以上数据绘制成的频率分布直方图所估计出的每单消费额的中位数与平均数恰好相等.用频率估计概率,完成下列问题:
试题篮