试题 试卷
题型:填空题 题类:常考题 难易度:普通
贵州省遵义市南白中学2019-2020学年高二上学期文数期中考试试卷
则四面体 体积的最大值为.
如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明:PA∥平面EDB;
(2)证明:PB⊥平面EFD.
如图,在底面为平行四边形的四棱锥P﹣ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,点E是PD的中点.
(Ⅰ)求证:AC⊥PB;
(Ⅱ)求证:PB∥平面AEC.
如图,在长方体ABCD﹣A1B1C1D1中,AA1=AD=a,AB=2a,E为C1D1的中点.
(1)求证:DE⊥平面BEC;
(2)求三棱锥C﹣BED的体积.
试题篮