试题 试卷
题型:解答题 题类:常考题 难易度:普通
浙江省浙南名校联盟2018-2019学年高二上学期数学期末联考试卷
(Ⅰ)求证 平面 ;
(Ⅱ)求直线 与平面 所成线面角的正弦值.
如图,在四棱锥P﹣ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD= , 底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(1)求证:PO⊥平面ABCD;
(2)求异面直线PB与CD所成角的余弦值;
(3)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出的值;若不存在,请说明理由.
①不论D折至何位置(不在平面ABC内),都有MN∥平面DEC;②不论D折至何位置,都有MN⊥AE;③不论D折至何位置(不在平面ABC内),都有MN∥AB;④在折起过程中,一定存在某个位置,使EC⊥AD.
试题篮