清代数学家明安图所著《割圆密率捷法》中比西方更早提到了“卡特兰数”(以比利时数学家欧仁・查理・卡特兰的名字命名).有如下问题:在
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3En%3C%2Fmi%3E%3Cmo%3E%C3%97%3C%2Fmo%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的格子中,从左下角出发走到右上角,每一步只能往上或往右走一格,且走的过程中只能在左下角与右上角的连线的右下方(不能穿过,但可以到达该连线),则共有多少种不同的走法?此问题的结果即卡特兰数
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsubsup%3E%3Cmtext%3EC%3C%2Fmtext%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmsubsup%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmsubsup%3E%3Cmtext%3EC%3C%2Fmtext%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3En%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsubsup%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
.如图,现有
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmo%3E%C3%97%3C%2Fmo%3E%3Cmn%3E4%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的格子,每一步只能往上或往右走一格,则从左下角
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3C%2Fmath%3E)
走到右上角
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmath%3E)
共有
种不同的走法;若要求从左下角
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3C%2Fmath%3E)
走到右上角
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmath%3E)
的过程中只能在直线
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的右下方,但可以到达直线
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 则有
种不同的走法.