(定义新运算)对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”。将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n)。例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以,F(123)=6。
(2)、若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ek%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmi%3EF%3C%2Fmi%3E%3Cmfenced%3E%3Cmrow%3E%3Cmi%3Es%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3EF%3C%2Fmi%3E%3Cmfenced%3E%3Cmrow%3E%3Cmi%3Et%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
。当F(s)+F(t)=18时,求k的最大值。