增根是在分式方程转化为整式方程的过程中产生的,分式方程的增根,不是分式方程的根,而是该分式方程化成的整式方程的根,所以涉及分式方程的增根问题的解题步骤通常为:①去分母,化分式方程为整式方程;②将增根代人整式方程中,求出方程中字母系数的值.阅读以上材料后,完成下列探究:
(1)、探究1:当
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Em%3C%2Fmi%3E%3C%2Fmath%3E)
为何值时,方程
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E5%3C%2Fmn%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmi%3Em%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
有增根?
(2)、探究2:当
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Em%3C%2Fmi%3E%3C%2Fmath%3E)
为何值时,方程
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E5%3C%2Fmn%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmi%3Em%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
的根是-1?
(3)、探究3:任意写出三个
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Em%3C%2Fmi%3E%3C%2Fmath%3E)
的值,使对应的方程
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E5%3C%2Fmn%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmi%3Em%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
的三个根中两个根之和等于第三个根.
(4)、探究4:你发现满足“探究3”条件的
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Em%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmo%3E++%EF%BC%8C+%3C%2Fmo%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Em%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmo%3E++%EF%BC%8C+%3C%2Fmo%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Em%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
的关系是