试题 试卷
题型:单选题 题类:常考题 难易度:困难
湖北省武汉市黄陂区2018-2019学年八年级下学期数学期末考试试卷
如图(1),在□ABCD中,P是CD边上的一点,AP与BP分别平分∠DAB和∠CBA。(1)判断△APB是什么三角形?证明你的结论;(2)比较DP与PC的大小;(3)如图(2)以AB为直径作半圆O,交AD于点E,连结BE与AP交于点F,若AD=5cm,AP=8cm,求证△AEF∽△APB,并求tan∠AFE的值。
已知抛物线yn=-(x-an)2+an(n为正整数,且0<a1<a2<…<an)与x轴的交点为An-1( , 0)和An(bn , 0).当n=1时,第1条抛物线y1=-(x-a1)2+a1与x轴的交点为A0(0,0)和A1(b1 , 0),其他依此类推.(1) 求a1、b1的值及抛物线y2的解析式;(2) 抛物线y3的顶点坐标为;依此类推第n条抛物线yn的顶点坐标为用含n的式子表示);所有抛物线的顶点坐标满足的函数关系式(3) 探究下列结论:①若用An-1 An表示第n条抛物线被x轴截得的线段的长,则A0A1等于多少? , An-1 An等于多少?②是否存在经过点A1(b1 , 0)的直线和所有抛物线都相交,且被每一条抛物线截得的线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.
试题篮