试题 试卷
题型:综合题 题类:模拟题 难易度:普通
黑龙江省绥化肇东市2020年中考数学三模试卷
如图,抛物线 交 轴于 两点,交 轴于点 , .
(Ⅰ)求抛物线的解析式;
(Ⅱ)若 是抛物线的第一象限图象上一点,设点 的横坐标为m,
点 在线段 上,CD=m,当 是以 为底边的等腰三角形时,求点 的坐标;
(Ⅲ)在(Ⅱ)的条件下,是否存在抛物线上一点 ,使 ,若存在,求出点 的坐标;若不存在,请说明理由.
①在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;
②在图中画出以线段AB为一腰,底边长为2 的等腰三角形ABE,点E在小正方形的顶点上.连接CE,请直接写出线段CE的长.
数学课上,老师出示了这样一道题:如图1, 中, ,点 在 上, , (其中 ) , 的平分线与 相交于点 , 垂足为 ,探究线段 与 的数量关系,并证明.同学们经过思考后,交流了自己的想法:
小明:“通过观察和度量,发现 与 相等.”
小伟:“通过构造全等三角形,经过进一步推理,可以得到线段 与 的数量关系.”
……
老师:“保留原题条件,延长图1中的 ,与 相交于点 (如图2),可以求出 的值.”
试题篮