试题 试卷
题型:填空题 题类:常考题 难易度:普通
江苏省泰兴市2016-2017学年七年级下学期期末考试数学试题
如图,正方形ABCD是由两个小正方形和两个小长方形组成的,根据图形写出一个正确的等式:.
通常,我们把长方形和正方形统称为矩形.如图1,是一个长为2a,宽为2b的矩形ABCD,若把此矩形沿图中的虚线用剪刀均分为4块小长方形,然后按照图2的形状拼成一个正方形MNPQ.(1)分别从整体和局部的角度出发,计算图2中阴影部分的面积,可以得到等式{#blank#}1{#/blank#}.(2)仔细观察长方形ABCD与正方形MNPQ,可以发现它们的{#blank#}2{#/blank#}相同,{#blank#}3{#/blank#}不同.(选填“周长”或“面积”)(3)根据上述发现,猜想结论:用总长为36米的篱笆围成一个矩形养鸡场,可以有许多不同的围法.在你围的所有矩形中,面积最大的矩形的面积是{#blank#}4{#/blank#}米2
.
探究题
问题再现:
数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.
例如:利用图形的几何意义证明完全平方公式.
证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:
这个图形的面积可以表示成:
(a+b)2或a2+2ab+b2
∴(a+b)2 =a2+2ab+b2
这就验证了两数和的完全平方公式.
实验过程: 用若干块这样的正方形和长方形硬纸片拼成一个新的长方形,通过不同的方法计算面积,得到相应的等式,从而探求出多项式乘法或分解因式的新途径.例如,选取正方形、长方形硬纸片共6块,拼出一个如图②的长方形,计算它的面积写出相应的等式有a2+3ab+2b2=(a+2b)(a+b)或(a+2b)(a+b)=a2+3ab+2b2.
探索问题:
试题篮