试题 试卷
题型:解答题 题类:模拟题 难易度:普通
河南省郑州市2020-2021学年高三上学期理数第一次质量检测试卷
已知椭圆C的中心在原点,焦点在x轴上,离心率等于 , 它的一个短轴端点是(0,2).
(1)求椭圆C的方程;
(2)P(2,3)、Q(2,﹣3)是椭圆上两点,A、B是椭圆位于直线PQ两侧的两动点,
①若直线AB的斜率为 , 求四边形APBQ面积的最大值;
②当A、B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过右焦点F且斜率不为0的动直线l与椭圆交于M,N两点,过M作直线x=a2的垂线,垂足为M1 , 求证:直线M1N过定点,并求出定点.
试题篮