试题 试卷
题型:填空题 题类:常考题 难易度:困难
浙江省金华十校2019-2020学年高二上学期数学期末考试试卷
如图,在三棱锥P﹣ABC中,△ABC是边长为2的正三角形,∠PCA=90°,E,H分别为AP,AC的中点,AP=4,BE= .
(Ⅰ)求证:AC⊥平面BEH;
(Ⅱ)求直线PA与平面ABC所成角的正弦值.
如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,AB∥DC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k,(k>0)
(Ⅰ)求证:平面COD⊥平面AOB;
(Ⅱ)当VA﹣DOC:VA﹣BOC=1:2时,求CD与平面AOB所成角的大小.
(Ⅰ)设点M为棱PD中点,求证:EM∥平面ABCD;
(Ⅱ)线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于 ?若存在,试确定点N的位置;若不存在,请说明理由.
Ⅰ 证明: 平面PHA;
Ⅱ 求AC与平面PBC所成角的正弦值.
试题篮