试题 试卷
题型:单选题 题类:常考题 难易度:困难
轴对称-最短路线问题+++++++
课题学习:我们知道二次函数的图象是抛物线,它也可以这样定义:如果一个动点M(x,y)到定点A(0,m)(m>0)的距离与它到定直线y=﹣m的距离相等,那么动点M形成的图形就是抛物线y=ax2(a>0)的图象,如图所示.
如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB= S矩形ABCD , 则点P到A、B两点距离之和PA+PB的最小值为( )
问题:如图1,点A、B在直线l的同侧,在直线l上找一点P,使得AP+BP的值最小,小明的思路是:如图2所示,先作点A关于直线l的对称点A',使点A'、B分别位于直线l的两侧,再连接A'B,根据“两点间线段最短”可知A'B与直线l的交点P即为所求.
试题篮