试题 试卷
题型:综合题 题类:真题 难易度:困难
山西省2020年中考数学试卷
问题情境:
如图①,点 为正方形 内一点, ,将 绕点 按顺时针方向旋转 ,得到 (点 的对应点为点 ),延长 交 于点 ,连接 .
猜想证明:
解决问题:
如图,山坡上有一颗树AB,树底部B点到山脚C点的距离BC为6 米,山坡的坡角为30°,小宇在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.
(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
①若C、O两点关于AB对称,则OA=2 ;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为 ;其中正确的是{#blank#}1{#/blank#}(把你认为正确结论的序号都填上).
【问题情境】
活动课上,同学们以等边三角形为背景开展旋转探究活动,数学小组经过研究发现“等边三角形在旋转过程中,对应边所在直线的夹角与旋转角存在一定关系”(注:平面内两直线的夹角是指两直线相交形成的小于或等于90°的角).如图1,将等边△ABC绕点A逆时针旋转15°得到△ADE , 则线段BC与线段DE的夹角∠BMD=15°.如图2,将等边△ABC绕点A逆时针旋转100°得到△ADE , 则线段BC与线段DE所在直线的夹角∠BMD=80°.
试题篮