试题 试卷
题型:填空题 题类:真题 难易度:普通
湖南省常德市2020年中考数学试卷
x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).
理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,
因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.
解决问题:求方程x3﹣5x+2=0的解为.
①x2﹣4x﹣1=0
②x(2x+1)=8x﹣3
③x2+3x+1=0
④x2﹣9=4(x﹣3)
我选择第{#blank#}1{#/blank#}个方程.
试题篮